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Outline

 Introduction to VTT and the Thick-SOI technology

Hybrid integration of III-V optoelectronics with Si photonics

(for optical interconnects etc.)

 Latest advances in monolithic integration on 3 µm SOI

Faraday rotation in 3 µm SOI waveguides

Conclusions & Outlook
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VTT Technical Research Center

of Finland Ltd.

 Leading research and technology company 

in the Nordic countries

 A state-owned, non-profit limited liability company 

 Expert services for domestic & international customers

, including MPW and dedicated runs for Si photonics

 Contract manufacturing services for small and medium 

volume by VTT Memsfab Ltd. (incl. Si photonics)

 Micronova clean room: 150 mm wafers, 2 600 m2

http://www.freeworldmaps.net/europe/finland/location.html

http://www.freeworldmaps.net/europe/finland/location.html
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Combination of two complementary

waveguide structures on 3–12 µm SOI

 Rib waveguides for single-mode operation

 Strip waveguides for dense integration

 Adiabatic rib-strip coupling

 Polarization independent operation

 Tolerates watt-level optical powers 

 Low-loss waveguides and passive components

 Hybrid integration of active components

 Monolithic photodiodes and modulators under 

development

1. Metal mirror

2. Rib waveguide

3. TIR mirror

4. Rib-strip converter

5. Vertical taper

Euler

bend

>1 µm
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Basics of rib waveguides

 Wavelength independent single-mode operation

(covering the whole 1.2 - 6 µm wavelength range)

 Width limit:

 Height ratio limit: h ≥ H/2

 Absolute size: H ≥ 2λ

Benefits:

 Small propagation loss (0.1 dB/cm)

 Small birefringency (Δneff ~10-3)

 SM operation over ultra-wide bandwidth

Limitations:

 Large bending radius (mm/cm scale)

 Cross-talk between waveguides

Hh

W
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Basics of strip waveguides

 Highly multi-moded (MM) waveguides

 Can be used in SM waveguide circuits IF light is 

kept in the fundamental mode

 Adiabatic rib-strip converters are a key 

component

Benefits:

 Small propagation loss (0.1-0.15 dB/cm)

 Zero birefringence possible

 Euler bends reaching down to 1 µm bending radius

 No cross-talk between waveguides (dense arrays)

Limitations:

 Excitation of higher-order modes needs to be 

avoided
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8

Hybrid integration of 

III-V optoelectronics 

with Si photonics
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Why to use III-V hybrid integration on 

SOI instead of monolithic integration?

 Both hybrid and monolithic approaches are needed to fulfil all the 

different needs for photonics integration!

 Monolithic approach is preferred in highest-volume applications

 Hybrid approaches provide agile solutions to large number of small 

& medium volume applications where 

 PIC cost is typically small compared to overall product price

 Total PIC-enabled revenue can become large

PIC revenue

Other revenue

Large volume Many small/medium volume products

Price 

per 

product
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Flip-chip bonding of III-V dies on SOI

 Submicron flip-chip accuracy with Au-Au thermo compression bonding

 Looking for improvements and new features on III-V chips: 

 Cleavage accuracy improvement or etched facets

 Mechanical alignment features and spot-size convertors

Polymer waveguide

SOI waveguide

EAMs bonded on test mounts
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Charaterization of EAM test assemblies

 EAM bandwidth limited by EAM design to ~10 Gb/s, 

which was confirmed experimentally

 Higher bandwidth up to ~40 Gb/s is possible with 

EAM redesign

10 Gb/s
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Simple and scalable transceivers for 

400G and even beyond 1 Tb/s

Directly modulated VCSELs and discrete PD arrays:

400 Gb/s

400 Gb/s

400 Gb/s

400 Gb/s

Further scaling to >>1 Tb/s with faster VCSELs, PAM-4, 

polarization MUX and/or more channels
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RAPIDO design for VCSEL integration

on 12 µm SOI for transceivers

 VCSEL coupling to locally thinned 8 µm 

SOI waveguides on 12 µm SOI chip

Interposer

VCSEL submount
assembly
(with INTEC driver)

Calculated power efficiency:

 8.6 pJ/bit for VCSEL+driver

 2.6 pJ/bit for PD+TIA

 Power consumption

dominated by the driver
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RAPIDO transmitter demo assembly

 Test assembly with VCSELs, SOAs, EAMs and drivers

 Coupling to a 3 µm SOI chip with a 12-to-3 µm taper

 Not yet functional due to high interface losses etc.

Vertical

taper

Fiber array 12 µm SOI

3 µm

SOI

SOA

VCSEL

Driver
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Revised assembly/integration plan for 

transceiver integration

 All optoelectronics integrated on an evaluation board

 Si photonic chip with a fiber (array) is added on top.

 Uncompromised electrical performance

 Modular assembly & testing 
1 mm

25 Gbps VCSELs

28 Gbps

PDs
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Development of mirrors and MUX/DEMUX 

on 12 µm SOI

 TIR mirrors demonstrated with 0.15 dB/90° loss

Etch depth

12µm

 4x1 multiplexers with cascaded 

MZIs, MMI couplers and TIR 

mirrors with 2–5 dB loss
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1.3 µm VCSELs with 5 nm channel spacing: 

Design, fabrication and testing

 New high-speed layout that supports integration on SOI

 Several wafers fabricated to cover 8 x 5 nm = 1295-1330 nm range

 ~20 000 VCSELs/wafer

np

p
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1.3 µm VCSELs with 5 nm channel spacing: 

Design, fabrication and testing

 VCSELs offer up to 4 mW of power with low power consumption 

and single-mode operation

Optical Power (mW)

20°C
80°C

Optical Spectrum (dB)VI Curve

Very low power consumption
11 mA x 1.6 V < 20 mW

High optical power of max. 
4 mW at RT, 1.2 mW at 80°C

Excellent SMSR
Ca. 45 dB
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1.3 µm VCSELs with 5 nm channel spacing: 

Design, fabrication and testing

 High-speed measurements carried out 

up to 56 Gb/s

 For more details about high-speed 

VCSELs: ECOC’19 paper M.2.C.5 by  

Antonio Malacarne (“Low-Power 1.3-µm 

VCSEL Transmitter for Data Center 

Interconnects and Beyond”)
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Latest advances in 

monolithic integration 

on 3 µm SOI
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Ultra-dense spirals, delay lines and MUX

based on TIR mirrors and Euler bends

 Mirrors: ~0.1 dB/90° loss

 Euler bends: <0.01 dB/90°

 Compact spirals with low losses

(0.1-0.15 dB/cm including the bends)

 Delay lines for filters, coherent 

receivers, microwave photonics etc.

 MZI, AWG, Echelle gratings etc. 

10 Gb/s DPSK 

demodulator

5 µm

MMI
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Athermal components on 3 µm SOI

 Polymer waveguides on 3 µm SOI with opposite TO coefficient

 End-fire coupling between polymer and SOI waveguides

 First experimental results confirm athermal multiplexing/filtering

 In SOI about 0.07 nm/K peak shift

 In polymer-SOI multiplexer the peak shift is below the measurement 

resolution (~0.01 nm/K due to fiber movement during T scanning)

MZI peak shift with

(arrow) and without

polymer waveguide

ARC coatings

Polymer waveguide

Mach-Zehnder interferometer:

With optimized ratio of polymer and SOI waveguide

lengths the temperature dependencies cancel out
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Thermo-optic and electro-optic switches

 Implanted heaters and p/n areas in a thin Si slab

 Heaters for >10 kHZ operation

 PIN modulation >1 MHz

(not for data)

24 mW/π

Top view

Cross 
section

Al Si

SiO2

Al

n

Al

p
p n

Top view

Cross 
section

Al Si

SiO2

Al

n

Al

p
p n

5 mW/π

7 dB ER
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 Metallized up-reflecting mirrors with 1-2 dB loss

 Output angle ~20° with standard TMAH etch

 Vertical coupling with modified etch (45° mirror)

 Reflection up (metal mirror) or down (TIR)

Up-reflecting mirrors for wafer level testing 

and VCSEL integration

BOXBOX

45o 45o
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MHU

Automatic wafer

handling unit

PS4L

E/O Prober

Instrumentation

Rack

Prober

Controller

VNA & digital

hi-speed test

equipment

Automated wafer level testing to ramp up

production and to speed up R&D

Lensed or

SiGRIN fiber

Optical probes

RF/DC probe

 Simultaneous electrical & optical probing is necessary for active devices

 Full automation is necessary to ramp up production (cassette-to-cassette)
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Faraday rotation in 

3 µm SOI waveguides



27

Faraday rotation in Thick SOI

 Collaboration with Hamburg University of Technology

 Chips provided to TUHH from VTT’s standard MPW runs

 Promising path towards a low-loss and broadband isolator on a chip

 Poster in Group Four Photonics (GFP) 2017:
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Faraday rotation in Thick SOI

 Silicon used as a magneto-optical active material

 Faraday rotation is x100 smaller in Si than in commonly used materials, 

but sufficient in a long, low-loss and polarization independent waveguide

 180° phase shift in bends to achieve continuous Faraday rotation

 Polarization rotation in Si is ~15°/K/cm and 0.5T was used to achieve 4 dB 

extinction ratio in the first demonstration

Polarization 

rotation 

cancels

out in a 

conventional 

layout

…but can 

accumulate 

if birefringent 

bends reflect 

polarization
 6 cm long

Spiral 

footprint

~0.5 mm2
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Conclusions & Outlook
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Conclusions

 Hybrid integration of Thick-SOI and III-V offers a versatile 

platform for optical interconnects and other applications

 Directly modulated long-wavelength VCSELs match well 

with micron-scale SOI waveguides

 Thick-SOI technology offers low loss PICs with SM, 

athermal and polarization independent operation

 On-going development for isolator, 400G transceiver and 

monolithically integrated (fast) PDs and modulators

 R&D and small/medium volume manufacturing offered by 

VTT and VTT Memsfab Ltd. 
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